Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The intensity of explosive volcanic eruptions is correlated with the amplitude of eruption tremor, a ubiquitously observed seismic signal during eruptions. Here we expand upon a recently introduced theoretical model that attributes eruption tremor to particle impacts and dynamic pressure changes in the turbulent flow above fragmentation (Gestrich et al., 2020). We replace their point source model with Rayleigh wave Green's functions with full Green's functions and account for depth variation of input fields using conduit flow models. The latter self-consistently capture covariation of input fields like particle velocity, particle volume fraction, and density. Body wave contributions become significant above 2-3 Hz, bringing the power spectral density (PSD) closer to observations. Conditions at the vent are not representative of flow throughout the tremor source region and using these values overestimates tremor amplitude. Particle size and its depth distribution alter the PSD and where dominant source contributions arise within the conduit. Solutions with decreasing mass eruption rate, representing a waning eruption, reveal a shift in the dominant tremor contribution from turbulence to particle impacts. Our work demonstrates the ability to integrate conduit flow modeling with volcano seismology studies of eruption tremor, providing an opportunity to link observations to eruptive processes.more » « lessFree, publicly-accessible full text available December 30, 2025
-
Abstract Fragmentation plays a critical role in eruption explosivity by influencing the eruptive jet and plume dynamics that may initiate hazards such as pyroclastic flows. The mechanics and progression of fragmentation during an eruption are challenging to constrain observationally, limiting our understanding of this important process. In this work, we explore seismic radiation associated with unsteady fragmentation. Seismic force and moment tensor fluctuations from unsteady fragmentation arise from fluctuations in fragmentation depth and wall shear stress (e.g., from viscosity variations). We use unsteady conduit flow models to simulate perturbations to a steady‐state eruption from injections of heterogeneous magma (specifically, variable magma viscosity due to crystal volume fraction variations). Changes in wall shear stress and pressure determine the seismic force and moment histories, which are used to calculate synthetic seismograms. We consider three heterogeneity profiles: Gaussian pulse, sinusoidal, and stochastic. Fragmentation of a high‐crystallinity Gaussian pulse produces a distinct very‐long‐period seismic signature and associated reduction in mass eruption rate, suggesting joint use of seismic, infrasound, and plume monitoring data to identify this process. Simulations of sinusoidal injections quantify the relation between the frequency or length scale of heterogeneities passing through fragmentation and spectral peaks in seismograms, with velocity seismogram amplitudes increasing with frequency. Stochastic composition variations produce stochastic seismic signals similar to observed eruption tremor, though computational limitations restrict our study to frequencies less than 0.25 Hz. We suggest that stochastic fragmentation fluctuations could be a plausible eruption tremor source.more » « lessFree, publicly-accessible full text available January 1, 2026
-
We present an adjoint-based optimization method to invert for stress and frictional parameters used in earthquake modeling. The forward problem is linear elastodynamics with nonlinear rate-and-state frictional faults. The misfit functional quantifies the difference between simulated and measured particle displacements or velocities at receiver locations. The misfit may include windowing or filtering operators. We derive the corresponding adjoint problem, which is linear elasticity with linearized rate-and-state friction and, for forward problems involving fault normal stress changes, nonzero fault opening, with time-dependent coefficients derived from the forward solution. The gradient of the misfit is efficiently computed by convolving forward and adjoint variables on the fault. The method thus extends the framework of full-waveform inversion to include frictional faults with rate-and-state friction. In addition, we present a space-time dual-consistent discretization of a dynamic rupture problem with a rough fault in antiplane shear, using high-order accurate summation-by-parts finite differences in combination with explicit Runge–Kutta time integration. The dual consistency of the discretization ensures that the discrete adjoint-based gradient is the exact gradient of the discrete misfit functional as well as a consistent approximation of the continuous gradient. Our theoretical results are corroborated by inversions with synthetic data. We anticipate that adjoint-based inversion of seismic and/or geodetic data will be a powerful tool for studying earthquake source processes; it can also be used to interpret laboratory friction experiments.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract Geophysical and geological studies provide evidence for cyclic changes in fault‐zone pore fluid pressure that synchronize with or at least modulate slip events. A hypothesized explanation is fault valving arising from temporal changes in fault zone permeability. In our study, we investigate how the coupled dynamics of rate and state friction, along‐fault fluid flow, and permeability evolution can produce slow slip events. Permeability decreases with time, and increases with slip. Linear stability analysis shows that steady slip with constant fluid flow along the fault zone is unstable to perturbations, even for velocity‐strengthening friction with no state evolution, if the background flow is sufficiently high. We refer to this instability as the “fault valve instability.” The propagation speed of the fluid pressure and slip pulse, which scales with permeability enhancement, can be much higher than expected from linear pressure diffusion. Two‐dimensional simulations with spatially uniform properties show that the fault valve instability develops into slow slip events, in the form of aseismic slip pulses that propagate in the direction of fluid flow. We also perform earthquake sequence simulations on a megathrust fault, taking into account depth‐dependent frictional and hydrological properties. The simulations produce quasi‐periodic slow slip events from the fault valve instability below the seismogenic zone, in both velocity‐weakening and velocity‐strengthening regions, for a wide range of effective normal stresses. A separation of slow slip events from the seismogenic zone, which is observed in some subduction zones, is reproduced when assuming a fluid sink around the mantle wedge corner.more » « less
-
Injection-induced seismicity and aseismic slip often involve the reactivation of long-dormant faults, which may have extremely low permeability prior to slip. In contrast, most previous models of fluid-driven aseismic slip have assumed linear pressure diffusion in a fault zone of constant permeability and porosity. Slip occurs within a frictional shear crack whose edge can either lag or lead pressure diffusion, depending on the dimensionless stress-injection parameter that quantifies the prestress and injection conditions. Here, we extend this foundational work by accounting for permeability enhancement and dilatancy, assumed to occur instantaneously upon the onset of slip. The fault zone ahead of the crack is assumed to be impermeable, so fluid flow and pressure diffusion are confined to the interior, slipped part of the crack. The confinement of flow increases the pressurization rate and reduction of fault strength, facilitating crack growth even for severely understressed faults. Suctions from dilatancy slow crack growth, preventing propagation beyond the hydraulic diffusion length. Our new two-dimensional and three-dimensional solutions can facilitate the interpretation of induced seismicity data sets. They are especially relevant for faults in initially low permeability formations, such as shale layers serving as caprock seals for geologic carbon storage, or for hydraulic stimulation of geothermal reservoirs. This article is part of the theme issue ‘Induced seismicity in coupled subsurface systems’.more » « less
-
Abstract Numerical simulations of Sequences of Earthquakes and Aseismic Slip (SEAS) have rapidly progressed to address fundamental problems in fault mechanics and provide self‐consistent, physics‐based frameworks to interpret and predict geophysical observations across spatial and temporal scales. To advance SEAS simulations with rigor and reproducibility, we pursue community efforts to verify numerical codes in an expanding suite of benchmarks. Here we present code comparison results from a new set of quasi‐dynamic benchmark problems BP6‐QD‐A/S/C that consider an aseismic slip transient induced by changes in pore fluid pressure consistent with fluid injection and diffusion in fault models with different treatments of fault friction. Ten modeling groups participated in problems BP6‐QD‐A and BP6‐QD‐S considering rate‐and‐state fault models using the aging (‐A) and slip (‐S) law formulations for frictional state evolution, respectively, allowing us to better understand how various computational factors across codes affect the simulated evolution of pore pressure and aseismic slip. Comparisons of problems using the aging versus slip law, and a constant friction coefficient (‐C), illustrate how aseismic slip models can differ in the timing and amount of slip achieved with different treatments of fault friction given the same perturbations in pore fluid pressure. We achieve excellent quantitative agreement across participating codes, with further agreement attained by ensuring sufficiently fine time‐stepping and consistent treatment of boundary conditions. Our benchmark efforts offer a community‐based example to reveal sensitivities of numerical modeling results, which is essential for advancing multi‐physics SEAS models to better understand and construct reliable predictive models of fault dynamics.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Abstract There is a growing recognition that subsurface fluid injection can produce not only earthquakes, but also aseismic slip on faults. A major challenge in understanding interactions between injection-related aseismic and seismic slip on faults is identifying aseismic slip on the field scale, given that most monitored fields are only equipped with seismic arrays. We present a modeling workflow for evaluating the possibility of aseismic slip, given observational constraints on the spatial-temporal distribution of microseismicity, injection rate, and wellhead pressure. Our numerical model simultaneously simulates discrete off-fault microseismic events and aseismic slip on a main fault during fluid injection. We apply the workflow to the 2012 Enhanced Geothermal System injection episode at Cooper Basin, Australia, which aimed to stimulate a water-saturated granitic reservoir containing a highly permeable ($$k = 10^{-13} - 10^{-12}$$ $$\hbox {m}{^2}$$ ) fault zone. We find that aseismic slip likely contributed to half of the total moment release. In addition, fault weakening from pore pressure changes, not elastic stress transfer from aseismic slip, induces the majority of observed microseismic events, given the inferred stress state. We derive a theoretical model to better estimate the time-dependent spatial extent of seismicity triggered by increases in pore pressure. To our knowledge, this is the first time injection-induced aseismic slip in a granitic reservoir has been inferred, suggesting that aseismic slip could be widespread across a range of lithologies.more » « less
-
Flexure and extension of ice shelves in response to incident ocean surface gravity waves have been linked to iceberg calving, rift growth, and even disintegration of ice shelves. Most modeling studies utilize a plate bending model for the ice, focusing exclusively on flexural gravity waves. Ross Ice shelf seismic data shows not only flexural gravity waves, with dominantly vertical displacements, but also extensional Lamb waves, which propagate much faster with dominantly horizontal displacements. Our objective is to model the full-wave response of ice shelves, including ocean compressibility, ice elasticity, and gravity. Our model is a 2D vertical cross-section of the ice shelf and sub-shelf ocean cavity. We quantify the frequency-dependent excitation of flexural gravity and extensional Lamb waves and provide a quantitative theory for extensional Lamb wave generation by the horizontal force imparted by pressure changes on the vertical ice shelf edge exerted by gravity waves. Our model predicts a horizontal to vertical displacement ratio that increases with decreasing frequency, with ratio equal to unity at ~0.001 Hz. Furthermore, in the very long period band (<0.003 Hz), tilt from flexural gravity waves provides an order of magnitude larger contribution to seismometer horizontal components than horizontal displacements from extensional Lamb waves.more » « less
-
SUMMARY Tsunami generation by offshore earthquakes is a problem of scientific interest and practical relevance, and one that requires numerical modelling for data interpretation and hazard assessment. Most numerical models utilize two-step methods with one-way coupling between separate earthquake and tsunami models, based on approximations that might limit the applicability and accuracy of the resulting solution. In particular, standard methods focus exclusively on tsunami wave modelling, neglecting larger amplitude ocean acoustic and seismic waves that are superimposed on tsunami waves in the source region. In this study, we compare four earthquake-tsunami modelling methods. We identify dimensionless parameters to quantitatively approximate dominant wave modes in the earthquake-tsunami source region, highlighting how the method assumptions affect the results and discuss which methods are appropriate for various applications such as interpretation of data from offshore instruments in the source region. Most methods couple a 3-D solid earth model, which provides the seismic wavefield or at least the static elastic displacements, with a 2-D depth-averaged shallow water tsunami model. Assuming the ocean is incompressible and tsunami propagation is negligible over the earthquake duration leads to the instantaneous source method, which equates the static earthquake seafloor uplift with the initial tsunami sea surface height. For longer duration earthquakes, it is appropriate to follow the time-dependent source method, which uses time-dependent earthquake seafloor velocity as a forcing term in the tsunami mass balance. Neither method captures ocean acoustic or seismic waves, motivating more advanced methods that capture the full wavefield. The superposition method of Saito et al. solves the 3-D elastic and acoustic equations to model the seismic wavefield and response of a compressible ocean without gravity. Then, changes in sea surface height from the zero-gravity solution are used as a forcing term in a separate tsunami simulation, typically run with a shallow water solver. A superposition of the earthquake and tsunami solutions provides an approximation to the complete wavefield. This method is algorithmically a two-step method. The complete wavefield is captured in the fully coupled method, which utilizes a coupled solid Earth and compressible ocean model with gravity. The fully coupled method, recently incorporated into the 3-D open-source code SeisSol, simultaneously solves earthquake rupture, seismic waves and ocean response (including gravity). We show that the superposition method emerges as an approximation to the fully coupled method subject to often well-justified assumptions. Furthermore, using the fully coupled method, we examine how the source spectrum and ocean depth influence the expression of oceanic Rayleigh waves. Understanding the range of validity of each method, as well as its computational expense, facilitates the selection of modelling methods for the accurate assessment of earthquake and tsunami hazards and the interpretation of data from offshore instruments.more » « less
An official website of the United States government
